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Summary. An algorithm for the parallelization of the atomic to molecular integral 
transformation and the subsequent steps in a GUGA based MCSCF calculation is 
presented. Timing data shows that the transformation and diagonalization steps 
are well parallelized and that several of the other portions of the MCSCF code are 
moderately parallel. Remaining sequential bottlenecks are identified. 
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1 Introduction 

Over the last seven years, several papers have appeared that present algorithms for 
the parallelization of the self-consistent field (SCF) portions of ab initio electronic 
structure codes [1, 2]. However, parallel implementation of correlated (post 
Hartree-Fock) methods have only recently been explored. Second-order Moller- 
Plesset perturbation theory (MP2) [-3], coupled cluster [4], and multi-reference config- 
uration interaction (MRCI) [-5] methods have all been examined for parallel content. 

A computational bottleneck common to all post Hartree-Fock methods is the 
transformation of the integrals in the atomic orbital (AO) basis into the molecular 
orbital (MO) basis. Several stand alone parallel transformation programs have 
been considered [6], but these were not incorporated into a practical application. 
Watts and Dupuis have presented a parallel transformation algorithm for shared 
memory machines which was used for parallel MP2 calculations [3]. 

In this paper, we describe a parallel transformation algorithm and the applica- 
tion of this algorithm to the parallelization of a MCSCF program based on 
a graphical unitary group approach (GUGA) CI program. This parallel algorithm 
has been implemented into the General Atomic and Molecular Electronic Struc- 
ture System (GAMESS) [-2] quantum chemistry code. 

2 Parallel algorithm and implementation 

In the full optimized reaction space (FORS) [7] and complete active space SCF 
(CASSCF) [8] approach to MCSCF calculations, one partitions the molecular 
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orbitals into several subspaces. These include the core orbitals (occupied with 
a fixed occupancy of two electrons), partially occupied orbitals, and empty virtual 
orbitals. The fractionally occupied valence orbitals are referred to as the "active 
space", and all possible configurations involving the active electrons are used. Once 
these spaces have been chosen by the user, the MCSCF wavefunction is completely 
specified. A good overview of MCSCF algorithms has been given by Roos [9]. 

The steps which must be performed by GAMESS in order to obtain an 
MCSCF energy are shown schematically in Fig. 1. The basic steps are: 1) Obtain an 
initial guess for the molecular orbitals (MOs) (these are usually obtained from an 
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SCF calculation, but do not have to be). 2) Calculate the integrals in the atomic 
orbital (AO) basis. 3) Generate the distinct row table which contains information 
describing the configuration state functions (CSFs) used in the MCSCF wavefunc- 
tion. 4) Transform the AO integrals into the current MO basis. 5) Sort only those 
transformed integrals with all indices in the core and active spaces into an order 
needed by step 6. 6) Calculate contributions (known as GUGA loops) to the CI 
Hamiltonian matrix, H. 7) Diagonalize H to obtain the CI eigenvectors, C. 
8) Calculate the 1 and 2 electron density matrices. 9) Form the orbital gradient 
(Lagrangian) and orbital hessian. 10) Form the augmented orbital hessian. 
11) Solve the Newton-Raphson equations to improve the orbitals. 12) Repeat steps 
4 through 11 until the desired convergence is achieved. 

In our algorithm, we try to parallelize as many of the steps in Fig. 1 as possible 
without major revisions of the code. 

The single-program multi-data (SPMD) model has been adopted for GAMESS 
[2]. In this model each node performs all of the tasks (the "peer" model), executes 
essentially the same code, and needs to have most (if not all) of the information 
(basis set, geometry, orbitals, etc.) necessary for the calculation. The major excep- 
tion to the peer model is that only one node (the "master") reads the input and 
writes the output. The master broadcasts information from the input file to all 
other nodes. The majority of this broadcasting is performed in the initial setup part 
of the calculation. 

The SPMD model has been very useful in that it is relatively easy for a new 
section of code to be run in parallel. In fact, the current algorithm requires only 
about thirty lines of parallel code (not including code that was initially modified for 
the SCF). 

The message passing library TCGMSG [10] developed by Robert Harrison is 
used to perform the necessary communication. TCGMSG uses the best communi- 
cation available for the particular architecture being used. It works on distributed 
memory machines (such as the Intel Delta), shared memory machines (such as an 
Alliant), and an Ethernetwork of UNIX workstations (possibly with different 
platforms). This portability is the main reason we chose TCGMSG to perform the 
communications. 

We use two different methods to perform load balancing. One is a static model 
(loop) and the other is a dynamic model (nxtval). The loop model essentially assigns 
every nth loop in a DO loop to the nth processor. No communication is required in 
this type of load balancing and it generally works well when each loop has about 
the same amount of work and/or there are many loops. This method also works 
best on processors of equal speed and work load. 

The nxtval method uses a shared counter to distribute the work. TCGMSG 
keeps track of the counter (generally on the master node) and increments it each 
time a processor calls for more work. This, of course, requires communication. 
Therefore, this model works best when the amount of work in each loop is fairly 
large (i.e. the communication is a small fraction of the compute time). This is the 
model that we use when the processors are not of the same speed and/or work load. 

Before discussing the parallel steps needed for each iteration of the MCSCF 
energy, the first three steps of the energy calculation must be discussed. In step 1, 
the initial orbital guess, the starting orbitals are usually obtained from an SCF 
calculation or a previous MCSCF calculation. If the orbitals are read from an input 
stream, the master reads and broadcasts them to the other nodes. This step is only 
performed once in the calculation and does not require much time (as will be shown 
in the timing examples). 
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Step 2, calculation of integrals in the AO basis, is also only performed once in 
the energy calculation. In our previous implementation of parallel SCF [2] this 
step was shown to be highly parallel. However, for the MCSCF implementation, it 
is necessary for all nodes to have a complete list of atomic integrals available (the 
reason for this will be explained in the integral transformation discussion below) 
and therefore, the AO integrals are calculated sequentially on each node. Since this 
sequential step is performed only once and is approximately of order N 4 (where 
N is the number of basis functions), the overall cost is minimal compared to the 
repeated N 5 integral transformations. If there is not enough disk space available on 
each node to hold the atomic integrals, they are recalculated each time they are 
needed in the integral transformation step (in a direct method). 

Generation of the distinct row table (DRT) defining the CSFs [11], step 3, is 
also performed just once in the energy calculation. Each node builds the table and 
stores all of the information into a local disk file. This information is needed 
throughout the rest of the calculation; therefore, it is necessary for each node to 
have the complete DRT. An alternative would be to let only the master node build 
the table and then broadcast the DRT data when it is needed. However, to avoid as 
much communication as possible during the iterative steps, we chose to allow each 
node to calculate and store this information. 

The first three steps discussed above are sequential, but they can be considered 
to be setup for the MCSCF energy iterations, since they are only performed once. 
The next steps are executed during each MCSCF iteration and have been parallel- 
ized as much as possible. 

A schematic of the parallel algorithm for the integral transformation (step 4) is 
given in Fig. 2. We have incorporated a new transformation algorithm from 
HONDO [12] into our code. This transformation can use an unsorted list of AO 
integrals and makes use of molecular symmetry (Abelian groups only) [13]. A key 
feature of this algorithm is that it calculates only those transformed integrals that 
are needed in the MCSCF. These are the (ijL kl), (aj lk l ) ,  (ablkl ) ,  (ajl lb) and 
(aj lbl )  integrals, where i,j, k, l are MOs in the core and active spaces and a, b are 
MOs in the virtual space. 

One option for performing the transformation consists of passes over the 
complete list of atomic integrals, where each pass generates a subset of the required 
molecular integrals. A pass consists of generating all ij index pairs for a given subset 
of kl. Since each node has a complete list of atomic integrals, this option is perfect 
for parallelization. The number of passes is chosen to be as evenly divisible by the 
number of processors as possible, ensuring load balance. Unfortunately, as will be 
seen in the first example, it is not always possible to perfectly divide the number of 
passes by the number of processors. 

Each node ends up with only a subset of the transformed integrals on its disk. 
The beauty of this algorithm is that there is no communication involved (unless 
nxtval balancing is used) and it is very easy to implement (as shown in Fig. 2). Note 
that only the master node transforms the one-electron integrals. 

The next task is to make each of the subsequent MCSCF steps work with the 
distributed molecular integral list and to parallelize where possible. Step 5 (sorting 
of the transformed integrals) is generally performed in memory since no integrals 
involving virtual MOs are needed and thus, memory for this step is usually 
available. First, the array that holds the sorted integrals is zeroed ensuring a 
correct global sum of the sort array. Then, each node sorts its subset of the integrals 
into the appropriate position in the sort array. After all of the nodes have 
completed the sort, a global sum is performed on the sorted array. Thus, all nodes 
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SUBROUTINE TRANSFORM 

ME = the processor's ID number 
NPROC = number of processors 

initialize parallel 

IPCOUNT = ME -i 
NEXT = -i 
MINE = -I 

Code here to determine number of passes. 

Begin passes over the atomic integrals to form subsets 
of the transformed integrals (IJ/KL). 

MINKL = 1 
i0 MAXKL = MINKL + SIZE OF PASS 

Select nxtval or loop balancing ... 

20 

IF (PARALLEL) THEN 
IF (NXTVAL) THEN 

MINE = MINE + 1 
IF (MINE.GT.NEXT) NEXT = NXTVAL() 
IF (NEXT.NE.MINE) GO TO 20 

ELSE 
IPCOUNT = IPCOUNT + 1 
IF (MOD(IPCOUNT,NPROC).NE.0) GO TO 20 

END IF 
END IF 
CALL SUBTRANS() 
CONTINUE 
IF (MAXKL.EQ.NUMKL) THEN GO TO 30 

NUMKL = maximum number of KL indices 

MINKL = MAXKL + 1 
GO TO i0 

30 CONTINUE 
END 

Fig. 2. Schematic of parallel integral transformation 

end up with the identical, complete sorted list of occupied MO integrals which they 
store onto disk. 

The global sum of the sorted integrals is essential for the next step (6). The 
sorted integrals are used to calculate contributions (GUGA loops [11]) to the CI 
Hamiltonian matrix, H. Since several integrals can contribute to the same loop, it is 
indeed convenient for all of the nodes to have all of the necessary integrals. 

The GUGA loop generation part of the code is not easy to parallelize. This part 
of the code can use a large amount of CPU time (see examples below), but more 
importantly it can also require considerable disk space to store the generated loops. 
Ideally, we would like to make sure that 1) each node performs only the calcu- 
lations needed to evaluate its assigned loops (i.e. distribute the CPU time evenly 
across the nodes) and 2) each node ends up with about the same number of loops 
stored on disk (i.e. distribute the loop storage evenly across the nodes). Unfortu- 
nately, many parts of the existing loop generation code have data dependencies 
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that we have been unable to avoid (i.e. lines of code where x(n)=x(n-1)+y).  
Parallelization at a higher level in the subroutine results in very poor load balance 
in both time and disk space. Therefore, we have opted to put the parallel calls 
around the subroutine that actually completes each loop's computation and writes 
it to disk. This means that the disk space needed to store loops is very evenly 
distributed, but that there is only limited savings (or parallel content) in the CPU 
time needed to calculate the GUGA loops. The decision to evenly divide the loops 
over the nodes, rather than to minimize CPU, is driven by the parallel require- 
ments of the subsequent diagonalization step. The even distribution of the disk 
space also permits problems that would not fit on one node because of disk space 
limitations to be run on several nodes where the combined disk space is enough to 
hold all of the loops. Additional improvement in the parallel nature of this part of 
the code will probably require a total rewrite of the loop generation algorithm to 
evenly distribute the computational time. 

The next step is to diagonalize / /  to obtain the CI eigenvectors [14]. This step, 
7, involves reading in the loops from disk to form ttC, where C is the current 
approximation to the CI eigenvector. Formation of this matrix vector product is by 
far the most time consuming step in an iterative Davidson diagonalization proced- 
ure. Each iteration requires an exact matrix diagonalization in an iterative sub- 
space (of dimension less than 30, typically). This and other steps in the Davidson 
diagonalization are negligible compared to the formation of I-IC, and are therefore 
run sequentially. 

Since the loops are distributed across the nodes, each node evaluates its partial 
contribution to HC and then a global sum is performed. Because the loops were 
evenly distributed across the nodes by the previous step, this part of the step is 
essentially perfectly parallel. 

During the CI diagonalization setup, loops contributing to the diagonal ele- 
ments are processed to form the total contribution to the diagonal o f / / .  Unit 
vectors corresponding to the lowest diagonal elements are generated as the initial 
approximation to each desired eigenvector, C. Diagonal elements of / - /are  then 
retained in memory to avoid the need to process the diagonal loops again. Their 
contribution to HC during the Davidson iterations is made correct by scaling each 
diagonal element by l/p, p = number of processors. The final global sum ofltC over 
p processors thus includes diagonal terms only once. Step 7 actually shows very 
nice speed-ups as will be demonstrated below. 

Upon finishing the CI diagonalization step, each node has the CI vectors and 
eigenvalues. The CI vectors are then used to generate the 1 and 2 electron density 
matrices (step 8). This step works in a manner similar to that of step 6. The CI 
vectors are used to generate loops which contribute to the density matrices [15]. 
The loops are actually generated by the same subroutine that generates the loops in 
step 6 and the comments on load balance from that discussion also apply here. The 
main parallelization of the loops is to distribute the disk space needed for the loops 
over all of the nodes. The largest difference between this step and step 6 is that the 
number of loops needed to generate the density is generally less than the number of 
loops needed to generate H. After the loops are generated, they are sorted into 
a form needed by step 9. Since each node has only a subset of the loops, a global 
sum of the density is performed after the sorting step. This sort and global 
summation is similar to that in step 5, and results in each node having the complete 
density. 

The next step (9) is the formation of the orbital gradient (Lagrangian asym- 
metry) and orbital hessian (hessian) [16]. The Lagrangian and hessian are formed 
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by combining the transformed integrals with elements of the density matrix. This is 
generally the part of the MCSCF calculation that requires the greatest amount of 
memory (to simultaneously hold the hessian and two-electron density in memory). 
In our current implementation, each node needs as much memory as it would need 
to run sequentially. Each node reads the complete density matrix into memory 
from disk. Then, each node reads buffer loads of its partial list of transformed 
integrals and computes its partial contribution to the Lagrangian and hessian. 

As mentioned earlier, only the master node has the one-electron transformed 
integrals, so that node evaluates the one-electron contributions to the Lagrangian 
and hessian. After all nodes have completed their contributions, global sums are 
performed on the Lagrangian and hessian, resulting in each node having the 
complete Lagrangian and hessian. 

The next two steps, formation of the augmented orbital hessian [17], which 
adds the orbital gradient to the hessian to improve numerical stability, and 
solution of the Newton-Raphson (NR) equations for improving the orbitals, are 
sequential steps. Solution of the NR equations amounts to finding the lowest 
eigenvector of the augmented hessian, and is currently performed sequentially by 
each node. Timing results presented in the next section reveal that this is an 
obvious place for future improvements in the parallel algorithm. 

Once the orbital improvements are made, convergence is checked. If the 
wavefunction (and energy) is not converged, steps 4 through 11 are then repeated. 

3 Timing examples 

One of the interesting aspects of MCSCF is that different types of calculations 
cause different parts of the code to be the primary bottleneck. For example, 
a calculation with many core orbitals and a relatively small active space will have 
the integral transformation and NR orbital improvement as its bottleneck. On the 
other hand, a calculation with only a few occupied orbitals but a relatively large 
active space will have its bottleneck at the CI diagonalization step. To illustrate this 
large variation in the computational bottleneck, three different types of examples 
are used for the timing tests. These examples are indicative of the range of MCSCF 
calculations performed with GAMESS. 

All of the tests were performed on RS/6000 model 350s connected by an 
Ethernet. The machines were dedicated for these tests, but the network was not 
isolated. Therefore, other packets on the network could interfere with the 
TCGMSG communications. Since all of the nodes are of the same speed and load, 
only the loop (static) balancing was used in these examples. Also, all of the 
examples use Ca symmetry. Even though we are able to use symmetry in each step 
of the MCSCF energy calculation, C1 symmetry is used to provide a fair compari- 
son between the different types of test examples and to make one iteration long 
enough for timing information to be meaningful. 

The first example is the twisted transition state of HzCNH using a triple-zeta 
valence (TZV) [-18] basis set (TZV+ +(2df, 2pd)) totaling 128 basis functions. 
There are 6 core orbitals and the active space consists of four electrons in four 
orbitals (one doubly occupied, one alpha occupied, one beta occupied, and one 
unoccupied in the reference) which generates only 20 configuration state functions 
(CSFs). 1.5 MW of memory and approximately 350 MB of disk are needed. The 
main disk usage is 331 MB for the two-electron atomic integrals and 7 MB for the 
transformed integrals. The remainder of the disk usage is for holding temporary 
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in format ion ,  loops  and  the CI  vectors. The  m e m o r y  requ i rement  does  no t  decrease  
when more  processors  are  used, bu t  the a m o u n t  of  d isk  used per  node  does. 

Table  1 shows the t iming results for one i te ra t ion  of  the M C S C F  energy on  one 
to five nodes.  The  t imes r epor t ed  are  f rom the mas te r  node.  Sequent ia l  steps are  
m a r k e d  as such in the table.  The  one node  t iming shows tha t  the t r ans fo rma t ion  is 
the sequent ia l  bo t t l eneck  for this example .  

Ten passes are  needed  to  pe r fo rm the t r ans fo rma t ion  on 1 node.  Thus,  in this 
pa r t i cu la r  example ,  the n u m b e r  of passes cou ld  no t  be made  evenly divisible  by  
three o r  four  and  so ideal  l oad  ba lance  is not  achieved for 3 and  4 nodes.  The  
t r ans fo rma t ion  step has speedups  (t ime on one p rocessor / t ime  on  p processors)  of  
2.0, 2.5, 3.3, and  5.0 for 2, 3, 4, and  5 nodes,  respectively.  The  co r r e spond ing  
efficiencies ( 1 0 0 ,  speedup/p)  are  100%, 83%, 83%, and  100%. Of  course,  the low 
efficiencies for 3 and  4 nodes  are  f rom the mas te r  having  to pe r fo rm ex t ra  passes 
tha t  some of  the o ther  nodes  do  no t  have to do. 

Whi le  mos t  of  the o ther  steps in this example  use a negligible a m o u n t  of  time, 
steps 9, 10, and  11 are  wor th  some comment .  The  t r ans fo rmed  two-e lec t ron  
in tegra l  con t r ibu t ions  to the Lag rang i an  and  orb i ta l  hessian show only  small  t ime 
decreases when more  nodes are applied. Since each node must  read in the density from 
disk and put  it into memory,  this is a sequential par t  of the step that  cannot  be avoided. 
However ,  there  m a y  be o ther  con t r ibu t ions  to the p o o r  scalabi l i ty  of  this step. 

The  one-e lec t ron  in tegra l  con t r ibu t ions  to the L a g r a n g i a n  and  o rb i t a l  hessian 
ac tua l ly  increase  in t ime from 1 to 3 nodes.  On ly  the  mas te r  node  is ca lcula t ing  the 

Table 1. Timing information from the master node in seconds for HzNCH for 1 to 5 nodes 

Step a 1 2 3 4 5 

1. Guess b 3.8 4,1 5,3 5.2 5.1 
2. AO int b 391.9 392.0 391.5 391.0 391.0 
3. DRT b 0.5 0.5 0.6 0,6 0.6 
4. Trans 1539.1 764.5 616.2 461.0 304.7 
5. Sort 1.2 0.7 0.6 0.5 0.4 
6. GUGA loops 0.1 0.1 0.1 0.1 0.1 
7. Diag 0.1 0.1 0.1 0.1 0.1 
8. DM2 0.1 0.1 0.2 0.2 0.2 
9. Lag + hess 

2 e- c 12.1 9.1 8.7 8.0 7.2 
1 e - d  4.5 11.5 18.1 18.3 18.1 

10 + 11. NR b 25.2 27.0 25.4 25.4 25.4 
iter. ~ 1582.4 8 t 3.1 669.4 513.5 356.1 
eft. e 97% 79% 77% 89% 

a The steps correspond to: 1) obtaining the initial guess, 2) calculating the atomic integrals, 3) generating 
the distinct row table, 4) transforming into the MO basis, 5) sorting the transformed integrals, 6) 
calculating GUGA loops 7) diagonalizing H, 8) calculating the electron density matrices, 9) forming the 
Lagrangian and the orbital hessian, 10) forming the augmented orbital hessian and 11) solving the NR 
equations. 
b This is a sequential step. 
c Transformed two-electron integral contribution. 
d Transformed one-electron integral contribution plus global sum of Lagrangian and the orbital 
hessian. 
e One iteration time - the sum of steps 4 through 11. 
e The efficiency (speedup/number of processors) based on steps 4 through 11. 
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actual one-electron contributions. The extra time for 2 to 5 nodes is associated with 
the large global summations of the Lagrangian and orbital hessian whose timing is 
also included in this step. The orbital hessian, in particular, is quite large. Fortu- 
nately, the global summation time seems to level off after about 3 nodes. TCGMSG 
employs a clever algorithm to diminish the number of operations and communica- 
tion required for a global sum. For details, the reader is referred to reference [10]. 

Steps 10 and 11 are sequential steps. Even though they consume only a small 
amount of CPU time in this example, Amdahl's Law shows that even small 
sequential bottlenecks quickly effect the efficiency. 

Since the transformation is the major bottleneck for this example, the efficiency 
for one iteration (steps 4 through 11) mostly follows the efficiency of the trans- 
formation. In this example, very good overall efficiencies are seen even at 5 nodes, 
implying that even more nodes could effectively be used for this example. Of course, 
as is seen in the 5 node timing, as the transformation time becomes small the other 
steps will consume a larger percentage of the overall time. Therefore, the overall 
efficiency will decrease. At 5 nodes, the time for steps 9, 10, and 11 is about 14% of 
the total iteration time. 

The second example is Ge2F4 using a 3-21G [19] basis set totaling 82 basis 
functions. The active space consists of four electrons in four orbitals which 
generates 20 CSFs (the same as the first example). This time, however, there are 48 
core orbitals; therefore, the NR step as well as the integral transformation is the 
bottleneck for the calculation. This example requires 3.8 MW of memory and 
approximately 65 MB of disk on one node. The disk usage is 7 MB for the 
two-electron atomic integrals, 33 MB for the transformed integrals, 12 MB for the 
second order density, 8 MB for the sorted integrals, and 0.065 MB for the loops. 
Again, the memory requirement will be the same for each node, the AO integral list 
is duplicated on each node, and the transformed integral and loop disk space is 
evenly distributed across all of the nodes. 

Table 2 shows the timing results for one iteration of the MCSCF energy on one 
to five nodes. The one node timing shows that indeed the transformation and NR 
solution are the bottlenecks for this example. The transformation step (4) has 
speedups of 2.3, 3.7, 6.2, and 7.6 for 2, 3, 4, and 5 nodes, respectively. While this 
seems strange (the speedups are actually larger than the number of nodes), the 
timing results given in the table are for the master only. The slave nodes are taking 
more work than the master; this imbalance results in speedups that appear to be 
greater than the theoretical 100% efficiency. One way to try to rectify this 
imbalance is to make the number of passes larger, but this would also require the 
atomic integrals to be read in or calculated (if using the direct option) more times 
than necessary. Thus, this is not a very attractive option. Since the load imbalance 
is not large, we have decided to implement the algorithm as described above. 

It is interesting that several steps (the sorting, density generation, and the 
transformed one-electron integrals - steps 5, 8, and 9) actually increase in time from 
1 to 3 nodes, instead of decreasing as would be expected. As noted in the first 
example, the time required to perform the large global sums is actually a significant 
percentage of each step. The large number of core orbitals gives relatively many 
occupied MO integrals needed in the sort (step 5) and many density elements in the 
density matrix generation (step 8) and increases the size of the orbital hessian (step 
9). For example, the global sum operates on 614, 916 double precision elements in 
step 5. To send such a long data set across the network and sum uses a non-trivial 
amount of CPU time. Of course, the more nodes involved, the larger the number of 
additions. As is seen in the first two examples and will be seen in the third example, 
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Table 2. Timing information from the master node in seconds for Ge2F4 for 1 to 5 nodes 

Step" 1 2 3 4 5 

1. Guess ~ 6.4 6.7 7.1 7.2 7.1 
2. AO int b 21.7 21.7 21.9 21.8 21.8 
3. DRT ~ 1.4 1.4 1.5 1.5 1.5 
4. Trans 237.9 104.4 63.6 38.4 31.4 
5. Sort 9.3 14.9 22.6 23.0 21.1 
6. GUGA loops 1.0 0.7 0.8 0.7 0.8 
7. Diag 0.1 0.1 0.1 0.1 0.1 
8. DM2 30.1 39.3 48.1 48.1 48.2 
9. Lag ~- hess 

2 e- c 51.4 37.0 30.2 26.9 23.9 
1 e- d 10.4 24.7 27.4 27.7 27.6 

10 + 11. NR b 100.0 100.4 100.2 100.1 100.3 
iter. ¢ 441.2 321.3 292.8 264.0 253.4 
eft .  f 67% 50% 42% 35% 

a-t See Table 1 for notes. 

the global summation of the orbital hessian (step 9) is always large, but the other 
two steps (5, 8) are smaller when small numbers of core orbitals are used. 

A large bottleneck in this example is the solution of the N R  equations. When 
more than two nodes are used in this particular example, the N R  step is the most 
time consuming portion of the calculation. This is obviously a part  of the code that 
will need to be improved in the future. 

The overall efficiencies for one iteration are reasonable only up to about  
3 nodes. The time consuming, sequential NR step is the reason for the poor  
scalability beyond this point. 

The third and final example is bicyclobutane, C4H6, using the 6-31G(d) basis 
set [20] giving 72 basis functions. There are 10 core orbitals and the active space is 
10 electrons in 10 orbitals which generates 19, 404 CSFs. 1.3 M W  of memory  and 
approximately 380 MB of disk are required when run on 1 node. The major  disk 
usage is 39 MB for atomic integrals, 13 MB for transformed integrals and 294 MB 
for the loops (10 MB for diagonal loops and 284 for off-diagonal loops). On five 
nodes, each node would require 39 MB for atomic integrals, 2.6 MB for trans- 
formed integrals and 58.8 MB for the loops (2 MB for diagonal loops and 56.8 MB 
for off-diagonal loops). 

Timing information for this example is given in Table III. In this example, the 
bottleneck is clearly the CI diagonalization step and it remains the bottleneck even 
up to five nodes. The speedups for this step are 1.9, 2.7, 3.4 and 4.2 for 2, 3, 4, and 
5 nodes, respectively, giving an 84% efficiency at 5 nodes. As noted in the algorithm 
section, these speedups are from the parallel formation of the matrix product HC 
and N O T  from the small diagonalization during each iteration. The CI step 
requires 34 iterations to converge. 

Steps 6 and 8 suffer from the problem of having only minimal parallelization in 
the C P U  time. As noted above, the choice of how to parallelize loop generation was 
made to ensure that step 7, rather than steps 6 and 8 showed the greatest parallel 
efficiency. This is seen in the modest decrease in time when more nodes are applied 
to the problem. Certainly, the formation of loops will require attention in the 
future. Notice that since the number of elements involved in these steps is smaller 
than those of the first example (24, 645 sorted integrals in the current example as 
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Table  3. Timing information from the master node in seconds for bicyclobutane for 1 to 5 nodes 

Step a 1 2 3 4 5 

1. Guess b 0.8 1.0 1.3 1.3 1.3 
2. AO int b 69.4 69.7 70.1 69.0 69.0 
3. DRT b 1.0 0.9 1.0 1.0 1.1 
4. Trans 118.0 57.9 48.8 27.6 22.8 
5. Sort 2.0 1.2 1.2 1.1 0.9 
6. GUGA loops 336.3 300.9 276.2 264.7 256.6 
7. Diag 1904.0 1003.9 705.4 558.1 455.8 
8. DM2 303.5 270.1 256.5 249.7 241.7 
9. Lag + hess 

2 e-  c 74.3 59.0 57.4 50.0 49.3 
1 e -  d 4.1 10.1 16.4 16.5 16.5 

10+ 11. NR b 83.1 83.2 83.2 83.1 83.1 
iter. e 2825.3 1786.3 1445.1 1250.8 1126.7 
eft- f 79% 65% 56% 50% 

"-f See Table 1 for notes. 

compared to 614, 916 in the previous example) and since the total time is larger in 
this example, the global summations do not dominate the timing results. The 
parallel advantage, of course, is that the GUGA loop disk files are evenly distrib- 
uted across all of the nodes reducing the storage demand on each node. 

The transformed two-electron contributions to the Lagrangian and orbital 
hessian (step 9) still show poor speedup and the one-electron contributions still 
increase with the number of nodes. The orbital hessian is still very large for this 
example, and the global sum is certainly the cause for the increase in time. 

The transformation step shows very good efficiencies in this example as it has in 
the other two examples. Even though it does not represent a large part of the 
calculation, parallelization of each step is important to achieve good overall 
speedups. In the same vein, since steps 10 and 11 are sequential they decrease the 
overall speedups even though they are not a large portion of the calculation. 

The overall efficiencies for this example are quite good even up to 5 nodes. 
Obviously, to get better speedups larger test cases can be used. However, the real 
key to future improvement is to make the portions that are only minimally parallel 
(steps 6, 8, 10, and 11) more efficient. 

4 Conclusions 

Techniques for the parallelization of the integral transformation and the sub- 
sequent steps of the GUGA MCSCF calculation have been presented. The trans- 
formation and diagonalization steps show very good speedups. Other parts of the 
calculation (sorting of the transformed integrals, calculating the second order 
density, and forming the Lagrangian and orbital hessian) show only minimal 
speedups. Solution of the Newton-Raphson equation for the orbital improvement 
step has been identified as a sequential bottleneck. 

Future improvements will involve obtaining more parallel content from the 
loop generation steps and to parallelize the Newton-Raphson step. Each of these 
will improve the overall scalability of the MCSCF iterations. Parallel computation 
of the analytic gradient [-2] permits MCSCF geometry optimization, numerical 
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hessians, etc. proceed with the same overall efficiency as the generation of the 
MCSCF wavefunction itself. 
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